Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term

نویسندگان

  • Juntang Ding
  • Bao-Zhu Guo
چکیده

In this work, we study the blow-up and global solutions for a quasilinear reaction–diffusion equation with a gradient term and nonlinear boundary condition:      (g(u)) t = ∆u + f (x, u, |∇u| 2 , t) in D × (0, T), ∂u ∂n = r(u) on ∂D × (0, T), u(x, 0) = u 0 (x) > 0 in D, where D ⊂ R N is a bounded domain with smooth boundary ∂D. Through constructing suitable auxiliary functions and using maximum principles, the sufficient conditions for the existence of a blow-up solution, an upper bound for the ''blow-up time'', an upper estimate of the ''blow-up rate'', the sufficient conditions for the existence of the global solution, and an upper estimate of the global solution are specified under some appropriate assumptions on the nonlinear system functions f , g, r, and initial value u 0 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-Up of Solutions for a Class of Reaction-Diffusion Equations with a Gradient Term under Nonlinear Boundary Condition

The blow-up of solutions for a class of quasilinear reaction-diffusion equations with a gradient term ut = div(a(u)b(x)∇u)+ f (x,u, |∇u|2, t) under nonlinear boundary condition ∂u/∂n + g(u) = 0 are studied. By constructing a new auxiliary function and using Hopf’s maximum principles, we obtain the existence theorems of blow-up solutions, upper bound of blow-up time, and upper estimates of blow-...

متن کامل

Global and blow-up solutions for quasilinear parabolic equations with a gradient term and nonlinear boundary flux

This work is concerned with positive classical solutions for a quasilinear parabolic equation with a gradient term and nonlinear boundary flux. We find sufficient conditions for the existence of global and blow-up solutions. Moreover, an upper bound for the ‘blow-up time’, an upper estimate of the ‘blow-up rate’ and an upper estimate of the global solution are given. Finally, some application e...

متن کامل

Existence of blow - up solutions for quasilinear elliptic equation with nonlinear gradient term

In this paper, we consider the quasilinear elliptic equation in a smooth bounded domain. By using the method of lower and upper solutions, we study the existence, asymptotic behavior near the boundary and uniqueness of the positive blow-up solutions for quasilinear elliptic equation with nonlinear gradient term.

متن کامل

On Existence and Nonexistence Global Solutions of Reaction-Diffusion Equations

We consider the initial value problem for the reaction-diffusion equation ut = ∆u + f(u). In this paper we show the existence and nonexistence of the global solutions in time. Especially, we extend the condition of the nonlinear terms to more general. We have the results of the existence and the nonexistence for the equation with the nonlinear term f satisfying lim infs→0 f(s)/sp > 0 and lim su...

متن کامل

Asymptotic Behavior of Solutions to a Degenerate Quasilinear Parabolic Equation with a Gradient Term

This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2011